
FaceForge Core — Project Design
Specification

Document Status: Design & Ideation
Scope: FaceForge Core
Last Updated: 2026-01-13
Version: v0.2.11

1. Source of Truth

This document is the authoritative design specification for FaceForge Core: what it must provide,
what it intentionally avoids, and the interfaces that future work will build on.

FaceForge is designed to stay stable and boring at the center, while advanced functionality
(recognition, training, integrations, rich visualizations, etc.) is delivered as optional plugins over the
Core’s public APIs and job system.

Note: This specification describes desired behavior and interfaces. Where implementation details are
not specified (or could vary), those areas are marked as TO-DO while preserving constraints and
intent.

2. Project Philosophy and Vision

2.1 What is FaceForge?

FaceForge is a local-first, self-hosted Asset Management System (AMS) specialized for entities
(real and fictional, human and non-human) and assets related to those entities (facial maps, voice
samples, attributes, relationships, etc.).

It is envisioned as a desktop-managed local services bundle:

A lightweight desktop shell (user interface + desktop tray app + admin settings + application
updates)
A local API server (headless, API-first) with optional localnet access capabilities
Managed local sidecars where appropriate (for example: a local S3-compatible object store)
Optional out-of-process plugins for compute-heavy workloads and other integrations

FaceForge - Dev Guide - Project Design Specification.pdf - 1 of 18

External tools (for example, ComfyUI or StashApp) must be able to query FaceForge and retrieve
assets through a stable API without depending on the UI.

A common target environment includes very large local datasets. FaceForge is expected to operate
primarily on local storage while remaining compatible with remote object storage systems (like
Amazon S3, Google Cloud Storage, MEGA S4, MinIO, etc.).

2.2 The “boring core” philosophy

The Core provides stable foundations:

Database CRUD operations (create, read, update, and delete) for entity records and the
metadata of their associated attachments
Durable storage abstractions for assets (likely visual media, audio clips, Stable Diffusion LoRAs,
etc.)
A consistent jobs + logging model
A plugin surface (API + worker/process + UI integration hooks)

The Core does not own compute-heavy intelligence such as face recognition, force-directed graph
rendering, or LoRA training. Those are delivered as plugins. FaceForge Core is the asset storage and
management platform those capabilities connect to.

2.3 Key Design Principles

1. Keep the center stable The Core stays small and dependable. New capabilities should plug in
through stable interfaces rather than expanding Core scope.

2. Transparent storage Assets must not be hidden inside opaque container volumes. Users must
be able to see and manage where their data lives (local disks, NAS, remote storage, etc.). The
user can control the application’s data storage broadly (running everything from a named
folder path) or in a more modular way (e.g., separating database files from object storage).

3. “Double-click” simplicity (cross-platform) The system must be runnable by non‑developer
users via a single desktop launcher experience. Container runtimes (Docker, Podman, etc.)
are explicitly out of scope for end‑user deployment. All required components are managed
directly by the desktop shell application.

4. Integration-first
The Core is designed to serve downstream tools via a stable and well documented API.
Documentation of the API is provided by OpenAPI/Swagger and kept in sync with the active
implementation at all times.

FaceForge - Dev Guide - Project Design Specification.pdf - 2 of 18

3. What FaceForge Core Provides

The specific capabilities and features of FaceForge Core are categorized and defined as follows:

3.1 Central Metadata Engine

Immutable entity IDs (SHA-256) assigned at creation time.
Entity records with flexible fields, including:
standard descriptive information fields
arbitrary admin-defined custom fields
A universal asset/attachment model that can represent any file type (images, audio, PDFs,
archives, model artifacts, etc.).
Durable representations of relationships between:
entities ↔ assets (attachments)
assets ↔ derived assets (e.g., thumbnail derived from an original image)
entities ↔ entities (relationships stored as metadata)

Note: The visual relationship graph UI is intentionally out of scope for the Core. The Core provides
the data surface for relationship metadata; rendering and interaction will live in an official plugin
(FFGraph).

3.2 Storage & Retrieval

A storage abstraction that supports rule-based selection of storage backends per asset
type/kind:
Local S3-compatible object storage (default: SeaweedFS)
Local filesystem-only provider (e.g., for small files)
Remote S3 endpoints (AWS S3, Wasabi, Backblaze, MEGA S4, etc.) configured by the user
Stable, secure download URLs for assets (including large artifacts such as LoRAs).
Streaming downloads with HTTP range support (resume-friendly).

First-run storage UX is desktop-managed:

FaceForge Desktop prompts for FACEFORGE_HOME (data directory) and ports on first run.
Core always treats FACEFORGE_HOME as the data root and creates its required subfolders under it.

Remote S3 endpoints remain a supported design target, but the initial list of “blessed” providers and
setup UX can evolve over time.

3.3 Jobs & Logging

FaceForge - Dev Guide - Project Design Specification.pdf - 3 of 18

Long-running operations are tracked as jobs in the database.
Job state + append-only structured logs:
Viewable in the web UI
Retrievable via headless API requests
Jobs can emit progress updates (percentage complete, current step, etc.).
A consistent “job type” contract so plugins can contribute job types.

Design intent: Compute-heavy work happens out-of-process. The Core remains the job registry, API
surface, and artifact store.

3.4 Plugin Foundations

Core is responsible for plugin discovery, registration, configuration, permissions, and versioning.
Plugins must be able to:

Add API routes (namespaced)
Register job types (namespaced) and emit logs/progress updates
Add new asset kinds / derived artifact types
Add UI pages/panels and navigation entries (integrated into the Core UI shell)
Subscribe to events (ingest completed, entity updated, asset created, etc.)

3.5 Web-Based UI for all Core Features

The UI exposes everything the Core can do (no “backend-only” features are allowed).
Plugin UIs integrate into the Core UI shell and navigation.

4. Planned Official Plugins

These named plugins are upcoming design targets that the Core must accommodate naturally. The
capabilities of these various plugins give a glimpse of the Core’s ultimate role and some potential
intended use cases.

FFIdentify — face detection + identity matching
Detect faces, compute embeddings, match identities across media, and emit structured results
back into Core.

FFGraph — relationship graphing
Force-directed graph visualization that turns Core relationship metadata into an interactive
“entities web.”

FaceForge - Dev Guide - Project Design Specification.pdf - 4 of 18

FFLoRA — LoRA training
Produces per-entity LoRAs (SDXL, SD 1.5, SD 2.x). Outputs are stored as assets with clean
provenance and derived-asset links.

FFSD — Stable Diffusion / ComfyUI integration
Custom nodes that can list, fetch, and resolve LoRAs and other artifacts directly from
FaceForge with a stable API contract.

FFStash — StashApp integration
Bulk-friendly import and sync workflows (performers → entities, media scanning jobs, write-
back of tags/notes where configured).

FFVoice — voice cloning
Manages voice samples as assets linked to entities and produces cloning artifacts per entity.

FFDialogue — conversational agent
Builds context-aware chat agents using entity metadata + attachments, with a dedicated UI
surface.

FFMeta — media library enrichment
Scans libraries, extracts faces/audio, matches identities, and writes structured outputs (tags,
notes, sidecar metadata files).

FFBackup — backup/export/restore
Scheduled backups of metadata + assets, selective exports (JSON + ZIP), and restore
workflows.

5. Project Non-Goals & Constraints

No paid SaaS should ever be required.
Authentication secrets are never committed (appropriate .gitignore rules, environment variable
support, etc.).
Plugins must not silently exfiltrate data; permissions and explicit enablement are required.
Avoid magical “it trains a LoRA.” Training lives outside the Core and is explicit about tooling
and invocation.
Keep Core stable; breaking changes are rare and intentional.
Avoid using any infrastructure that forces Electron-scale overhead without a hard requirement
for it.

FaceForge Core does not directly:

FaceForge - Dev Guide - Project Design Specification.pdf - 5 of 18

Perform face detection or recognition
Generate embeddings
Do identity matching
Train or tune LoRAs
Render a force-directed relationship graph
Directly integrate with third-party apps (ComfyUI, StashApp, etc.)

The Core provides the platform surface those concerns plug into.

6. Core Architecture Baseline (Practical v1 Target)

This section describes a practical minimum baseline intended to be reliable and easy to run locally
without containerization.

6.1 Runtime Layout (What Ships)

6.1.1 Desktop Shell Orchestrator - Tauri v2 desktop app (tray + updates + system popups) -
Responsible for: - Starting/stopping/monitoring managed components (Core API service, local
object storage, plugin runners) - Autostart at login (optional) - Presenting status/logs and opening
the web UI

6.1.2 Core Service (Python 3.11/3.12 + FastAPI + Uvicorn) - Runs as a local HTTP API server: -
/v1/... API - /docs and /redoc API playground - the web UI as static assets (one service, one port)

6.2 Database (SQLite)

SQLite is the metadata database.
The database lives under the user data directory (file-based, easy to relocate and back up).
The Core uses a relational spine for durable relationships (entities/assets/jobs/relationships)
plus JSON fields for flexible, admin-defined descriptors.

Why SQLite (design reasoning): - Embeddable engine: no separate database service to
install/manage; lifecycle is bound to the Core process. - Local-first reliability: single-file persistence
with excellent durability; easy backups and restores. - Flexible fields without schema churn:
admin-defined fields live in JSON; common fields can be indexed via generated columns. -
Operational simplicity: fewer moving parts, fewer failure modes, and a smoother “double-click”
experience.

6.3 S3-Compatible Object Storage (SeaweedFS)

FaceForge - Dev Guide - Project Design Specification.pdf - 6 of 18

Default: SeaweedFS providing a local, S3-compatible endpoint for asset storage.
SeaweedFS points at a user-selected directory inside the FaceForge data directory (or another
user-chosen path).
Optional: remote S3 endpoint configured by the user (AWS/Wasabi/Backblaze/etc.) in later
phases.

Why SeaweedFS (design reasoning): - S3 compatibility for external tools without bundling
MinIO (and its licensing/packaging concerns). - User transparency over where bucket data lives on
disk. - Lightweight local services model appropriate for a self-hosted desktop-managed bundle.

6.4 Network and Security Defaults

Core binds to 127.0.0.1 by default (not LAN-accessible unless the user opts in).
Sensitive endpoints require a per-install token (stored in the config in the user data directory).
The system exposes one localhost port by default (API + UI served together).

6.5 Key Constraints

Runs locally on one machine.
Supports GPU-first plugin workflows, but the Core runs without a GPU.
Windows-friendly setup is mandatory, while still keeping the architecture cross-platform.

7. Data model (Core-owned, plugin-friendly)

This section defines the conceptual model. The physical schema is implementation work, but the
invariants must hold.

7.1 Entities

Entities are the primary identity objects in the system (humans, characters, creatures, etc.).

entity_id: SHA-256 hex string (64 chars), immutable
display_name: string
aliases: string[]
fields: JSON object for admin-defined fields (validated by field definitions)
primary_thumbnail_asset_id: asset reference (optional)
tags: string[]
created_at, updated_at: timestamps
plugin_data: JSON object keyed by plugin id (namespaced)

FaceForge - Dev Guide - Project Design Specification.pdf - 7 of 18

7.2 Assets (Attachments)

Universal attachment model (files, models, documents, etc.).

asset_id: SHA-256 hex string (64 chars), immutable
owner: { "type": "entity" | "system" | "plugin", "id": "..." }
linked_entity_ids: entity_id[] (many-to-many)
kind: string (examples: image.original, image.thumbnail, model.lora, doc.pdf, audio.clip)
mime_type, size_bytes
content_hash: sha256 of file bytes (dedupe/integrity)
storage: provider + bucket + key
derived_from_asset_id: optional provenance link
extracted_metadata: JSON (Core-generated at ingest time)
user_metadata: JSON (optional)
plugin_data: JSON (namespaced)

7.3 Descriptors and Field Definitions

Two complementary concepts:

Field definitions: admin-declared keys that control validation and UX (type, options, regex,
etc.).
Descriptors: facts/attributes that may be time-bound or historical (addresses, phone numbers,
notes, external IDs, etc.).

Design intent: - The system must support new descriptor keys being defined at any time. - Historic
records are not required to have those keys. - Historic records may be updated later, without
migrations or schema changes.

7.4 Jobs, Events, Relationships

Jobs track long-running operations and their logs.
Events optionally provide an append-only integration surface.
Relationships store metadata relationships (visualization belongs outside Core).

8. Plugin Model (Contract-Level)

8.1 Plugin Types

A plugin may provide any combination of:

FaceForge - Dev Guide - Project Design Specification.pdf - 8 of 18

API plugins (routes)
Worker/process plugins (job types and an out-of-process runner)
UI plugins (pages, panels, nav items, settings forms)
Asset processors (derive thumbnails, transcode, generate model artifacts)
Integrations with third party applications (ComfyUI, StashApp, etc.)

8.2 Plugin Manifest (Concept)

Each plugin ships with a manifest (example: plugin.json) containing:

id, name, version
core_compat: semver range
capabilities: ["api", "runner", "ui", ...]
config_schema: JSON Schema (for UI-rendered settings)
permissions: declared needs (read entities, write assets, create jobs, filesystem scopes, network,
GPU access, etc.)
routes_prefix: e.g. /v1/plugins/<id>
job_types: list (namespaced)
entrypoints:
runner: how to start the plugin process
ui: route(s) exposed in the Core UI shell

8.3 Execution Model (Out-of-Process First)

Phase 1 (MVP): - plugins installed as folders inside a local install dir - Core loads manifests and
exposes plugin metadata via API - Desktop shell starts/stops plugin runner processes as needed -
Plugins communicate with Core via HTTP: - create jobs - stream logs/progress - upload artifacts
(assets) and link them to entities - UI renders navigation based on manifest + enabled status

Phase 2 (later): - install from URL/local .whl/.zip - per-plugin virtualenvs (and potentially per-plugin
Python versions) - signed bundles + marketplace

TO-DO: Bundle signing, distribution, sandboxing strategy, and permission enforcement depth
need a separate design doc when in scope.

9. API Contract (Core + Plugin Friendly)

9.1 Versioning

Core API version prefix: /v1/...

FaceForge - Dev Guide - Project Design Specification.pdf - 9 of 18

Avoid breaking changes. Prefer adding fields rather than removing.

9.2 Core Endpoints (Minimum)

9.2.1 Entities - GET /v1/entities - POST /v1/entities - GET /v1/entities/{entity_id} - PATCH /v1/entities/{entity_id} - DELETE
/v1/entities/{entity_id} (soft delete recommended)

9.2.2 Descriptors - GET /v1/entities/{entity_id}/descriptors - POST /v1/entities/{entity_id}/descriptors - PATCH
/v1/descriptors/{descriptor_id} - DELETE /v1/descriptors/{descriptor_id}

9.2.3 Field Definitions (Admin) - GET /v1/admin/field-defs - POST /v1/admin/field-defs - PATCH /v1/admin/field-
defs/{field_key} - DELETE /v1/admin/field-defs/{field_key}

9.2.4 Assets / Attachments - POST /v1/assets/upload (multipart; supports companion _meta.json) - POST
/v1/assets/bulk-import (directory import job; reads *_meta.json sidecars) - GET /v1/assets/{asset_id} - GET
/v1/assets/{asset_id}/download (stream; must support HTTP range) - POST
/v1/entities/{entity_id}/assets/{asset_id}/link - POST /v1/entities/{entity_id}/assets/{asset_id}/unlink

9.2.5 Relationships - GET /v1/relationships?entity_id=... - POST /v1/relationships - DELETE
/v1/relationships/{relationship_id} - GET /v1/relation-types?query=sp

9.2.6 Jobs - POST /v1/jobs - GET /v1/jobs/{job_id} - GET /v1/jobs/{job_id}/log - POST /v1/jobs/{job_id}/cancel

9.2.7 Plugins - GET /v1/plugins - POST /v1/plugins/{id}/enable - POST /v1/plugins/{id}/disable - GET /v1/plugins/{id}/config
- PUT /v1/plugins/{id}/config

9.3 Integration-Driven Core Requirements

Stable asset listing & download - GET /v1/entities/{entity_id}/assets?kind=model.lora - GET
/v1/assets/{asset_id}/download supports large files and resumable downloads (HTTP range).

Bulk operations - POST /v1/entities/bulk-upsert (idempotent; external IDs supported) - POST /v1/jobs must
support large inputs via stored “job input assets” (avoid giant JSON payloads)

TO-DO: The exact shape of external IDs and bulk-upsert conflict resolution rules require
specification.

10. Storage & Path Configuration

All persistent data is stored in one or more user-controlled, user-defined directories.

FACEFORGE_HOME is the data directory root for FaceForge.

FaceForge - Dev Guide - Project Design Specification.pdf - 10 of 18

In the Desktop distribution, the application binaries live in the installer-managed install
location.
Desktop launches Core with FACEFORGE_HOME set to the user-selected path.
When running Core headlessly (advanced usage), FACEFORGE_HOME can be supplied via environment
variable.
If FACEFORGE_HOME is not set, Core uses a deterministic per-user OS data directory (never the process
working directory):
Windows: %LOCALAPPDATA%\\FaceForge
macOS: ~/Library/Application Support/FaceForge
Linux: $XDG_DATA_HOME/faceforge (or ~/.local/share/faceforge)

10.1 Required subfolders (created by Core)

On startup, Core ensures these subfolders exist under FACEFORGE_HOME:

${FACEFORGE_HOME}/db (SQLite metadata database directory)
Default DB file: ${FACEFORGE_HOME}/db/core.sqlite3
${FACEFORGE_HOME}/assets (filesystem-backed asset storage)
Content-addressed layout for the filesystem provider
${FACEFORGE_HOME}/s3 (local S3/SeaweedFS data directory)
When SeaweedFS is enabled, its default data dir is ${FACEFORGE_HOME}/s3/seaweedfs
${FACEFORGE_HOME}/logs (log files)
${FACEFORGE_HOME}/tmp (temporary files)
${FACEFORGE_HOME}/config (configuration files)
${FACEFORGE_HOME}/config/core.json (Core configuration)
${FACEFORGE_HOME}/config/ports.json (launcher-selected ports)
${FACEFORGE_HOME}/tools (user-managed tool overrides, e.g. ExifTool)
${FACEFORGE_HOME}/plugins (plugin folders containing plugin.json manifests)

10.2 Configurable vs non-configurable paths

Core supports path overrides via ${FACEFORGE_HOME}/config/core.json:

Configurable: paths.db_dir, paths.s3_dir, paths.logs_dir, paths.plugins_dir (absolute or relative-to-
FACEFORGE_HOME).
Intentionally not configurable: config/ and tmp/.

10.3 Core configuration file (current shape)

Core uses JSON configuration at ${FACEFORGE_HOME}/config/core.json. Current shape (v1):

FaceForge - Dev Guide - Project Design Specification.pdf - 11 of 18

auth.install_token: per-install token required for non-health endpoints
network.bind_host, network.core_port, network.seaweed_s3_port
paths.* (optional path overrides)
tools.exiftool_enabled, tools.exiftool_path (optional override)
storage.routing + storage.s3 (routing and S3 endpoint credentials)
seaweed.* (optional Core-managed SeaweedFS; Desktop typically orchestrates SeaweedFS)

11. Frontend Requirements (Core UI + plugin UI)

11.1 Core UI Coverage

The Core UI covers all Core features:

manage entities and descriptor fields
upload/link/download attachments
browse/search/filter entities and assets
view job status and logs
manage plugins (enable/disable/config)

11.2 UI Delivery Model (Aligned with Desktop + Local Services)

The Core service serves the web UI as static assets.
Users can open it in a browser at http://127.0.0.1:<port> or view it inside the desktop shell window.

Minimum UX expectations:

Entities page with list + gallery view
Entity detail page with tabs:
Overview
Descriptors
Attachments
Relationships (metadata)
Plugin panels (rendered per plugin)

UI delivery is intentionally runtime-light:

The Core service serves the UI and does not require NodeJS at runtime.
Current direction: server-rendered HTML (with minimal JS where needed) so the UI can ship
inside Core without a runtime build chain.

FaceForge - Dev Guide - Project Design Specification.pdf - 12 of 18

12. Packaging and “Double-Click to Run”

This section defines the desired end-user experience for running FaceForge Core locally and the
specific design decisions intended to reduce friction in that process as much as possible.

12.1 Network Ports

Core exposes two localhost ports which are configurable via the application config files:
Core port (API + UI) (default port: 43210)
SeaweedFS S3-compatible port (default port: 43211)
Launcher supports auto-picking a free port and writing the chosen port to:
${FACEFORGE_HOME}/config/ports.json

Core may also support a legacy compatibility location: ${FACEFORGE_HOME}/runtime/ports.json

12.2 Desktop Launcher Experience (Cross-Platform)

A desktop launcher is a first-class deliverable.

Release UX requirements: - ship a FaceForge Desktop app (Tauri) that behaves like a real app: -
first-run wizard for choosing FACEFORGE_HOME and Core port - starts/monitors required components (Core
API service, SeaweedFS services, plugin runners) - exposes only the UI/API port - minimizes to
system tray instead of exiting when the window is closed - tray menu: Open UI, Status, Logs, Stop,
Restart, Exit - on exit: prompt whether to stop services or leave them running

User-facing simplification goals: - one installer per OS (or portable zip where appropriate) - one
desktop launcher app - one user-chosen data directory - no loose scripts

Documentation is written for non-engineers first and includes screenshots of first-run and tray
controls.

12.3 Runtime Constraints

NodeJS is not required at runtime or for the standard build toolchain.
The desktop shell must be lightweight (reserve CPU/RAM/VRAM for the likely AI workloads
managed by FaceForge plugins).

12.4 Packaging Notes (Implementation Direction)

Tauri packages the desktop app per-OS.
Core Python service ships as a sidecar:

FaceForge - Dev Guide - Project Design Specification.pdf - 13 of 18

either a frozen binary (PyInstaller/Nuitka), or
an embedded Python runtime + venv
SeaweedFS binaries live alongside the app (or are user-supplied) and are launched with explicit
paths/config.

TO-DO: Update strategy for the Core service, SeaweedFS, and plugin bundles.

12.5 Dev Bundling (Standard Commands + Outputs)

This section standardizes how developers produce bundled artifacts locally for testing and
validation.

Scope: “bundling” here means producing:

a frozen Core executable via PyInstaller
a bundled Desktop installer (Windows MSI) via Tauri

Prerequisites (Windows):

A usable system Python (recommended: Python 3.12 with the py launcher)
Rust toolchain (stable)
Tauri CLI (cargo install tauri-cli --locked)
WiX toolset (required for MSI builds)

Note: All repo scripts are designed to run with the repo-local .venv and will create it automatically if
missing.

12.5.0 macOS/Linux note (current state)

The standardized PowerShell scripts under scripts/ are currently Windows-first (they assume a
Windows-style .venv layout in some places).
macOS/Linux developers can still bundle the Core binary using PyInstaller, but should run the
equivalent commands manually (below).
Desktop installer outputs on macOS/Linux are produced by cargo tauri build, but release-grade
“Core sidecar bundling” is currently standardized only for the Windows MSI pipeline.

Bundle Core manually (macOS/Linux):

python3.12 -m venv .venv
./.venv/bin/python -m pip install --upgrade pip
./.venv/bin/python -m pip install -e ./core
./.venv/bin/python -m pip install pyinstaller

FaceForge - Dev Guide - Project Design Specification.pdf - 14 of 18

cd core
../.venv/bin/python -m PyInstaller pyinstaller.spec --noconfirm --distpath dist --workpath build

Expected outputs (macOS/Linux):

core/dist/ contains the built Core executable (typically faceforge-core without a .exe extension).
core/build/ contains PyInstaller work files.

Build Desktop installers (macOS/Linux):

cd desktop/src-tauri
cargo tauri build

Expected outputs (macOS/Linux):

desktop/src-tauri/target/release/bundle/ contains OS-specific installer artifacts (subfolder names and file
extensions vary by OS).

12.5.1 Bundle Core (PyInstaller)

From the repo root:

./scripts/check-core.ps1

./scripts/build-core.ps1

What it does:

Ensures .venv exists (creates it if needed)
Installs Core into .venv (editable) and installs PyInstaller
Runs PyInstaller using core/pyinstaller.spec
Normalizes output so downstream tooling can rely on a stable path/name

Primary outputs:

core/dist/faceforge-core.exe (stable path; preferred output for all callers)

Secondary outputs (implementation detail):

core/build/ (PyInstaller workdir)
core/dist-* and/or core/build-* may be created only if you opt in to timestamp fallback

Common options:

./scripts/build-core.ps1 -KeepBuildHistory keeps old build-*/dist-* folders.

FaceForge - Dev Guide - Project Design Specification.pdf - 15 of 18

./scripts/build-core.ps1 -AllowTimestampFallback uses dist-YYYYMMDD-HHMMSS if core/dist is locked.

12.5.2 Bundle Desktop (Windows MSI via Tauri)

This creates an installer that bundles the desktop shell plus the Core binary as a sidecar.

1) Build Core (produces core/dist/faceforge-core.exe):

./scripts/build-core.ps1

2) Stage the Core binary into Desktop’s Tauri bundle inputs:

New-Item -ItemType Directory -Force -Path 'desktop/src-tauri/binaries' | Out-Null
Copy-Item -Force 'core/dist/faceforge-core.exe' 'desktop/src-tauri/binaries/faceforge-core-x86_64-pc-windows-msvc.exe'

3) Build the Desktop installer:

Push-Location 'desktop/src-tauri'
cargo tauri build
Pop-Location

Primary outputs (Windows):

desktop/src-tauri/target/release/bundle/msi/*.msi

Note: The exact MSI filename includes the app name and version; treat *.msi under that folder as
the output.

12.6 New Release (Standard Process + CI Sequence)

This section standardizes how new releases are cut and what happens inside GitHub Actions when
release assets are produced.

12.6.1 Local maintainer steps (version bump → tag → release)

1) Ensure your working tree is clean and CI is green locally:

./scripts/check-core.ps1

2) Choose the new version number (SemVer: X.Y.Z).

3) Bump versions across Core + Desktop in one go:

FaceForge - Dev Guide - Project Design Specification.pdf - 16 of 18

./scripts/set-version.ps1 -Version X.Y.Z

This updates, at minimum:

core/pyproject.toml

core/src/faceforge_core/app.py

desktop/src-tauri/Cargo.toml

desktop/src-tauri/tauri.conf.json

4) Update human-facing release notes (as appropriate):

RELEASE_NOTES.md

5) Commit the version bump + notes:

git add -A
git commit -m "chore(release): vX.Y.Z"

6) Create and push the tag (release automation expects a v-prefixed tag):

git tag vX.Y.Z
git push origin HEAD
git push origin vX.Y.Z

7) Create a GitHub Release for tag vX.Y.Z and publish it.

Alternative: you may run the release workflow manually via workflow_dispatch and provide tag: vX.Y.Z.

12.6.2 What GitHub Actions does (release-core workflow)

When a release is published (or the workflow is manually dispatched), GitHub Actions runs
.github/workflows/release-core.yml.

Sequence (Windows release assets job):

1) Check out the repository at the release tag. 2) Ensure core/pyinstaller.spec exists (for legacy tags it
may be fetched from the default branch). 3) Sync version metadata from the tag (best-effort safety
net). 4) Set up Python 3.12. 5) Set up Rust toolchain. 6) Install Tauri CLI (cargo install tauri-cli --locked). 7)
Install WiX toolset (MSI tooling). 8) Build the Core executable by running ./scripts/build-core.ps1. 9)
Collect/normalize Core output into core/dist/faceforge-core.exe. 10) Stage Core into Desktop sidecar
binaries: - desktop/src-tauri/binaries/faceforge-core-x86_64-pc-windows-msvc.exe 11) Build the Desktop MSI via cargo
tauri build. 12) Collect release artifacts into artifacts/release/: - Desktop *.msi - faceforge-core.exe - SHA256SUMS.txt

FaceForge - Dev Guide - Project Design Specification.pdf - 17 of 18

(SHA-256 hashes of the files above) 13) Upload these files to the GitHub Release as downloadable
assets.

Published release assets (expected):

faceforge-core.exe

FaceForge*.msi

SHA256SUMS.txt

13. Relevant Links (Informational References)

FastAPI: https://fastapi.tiangolo.com/
SeaweedFS: https://seaweedfs.com/
SQLite: https://www.sqlite.org/
StashApp: https://stashapp.cc/
Tauri: https://tauri.app/
Uvicorn: https://www.uvicorn.org/

FaceForge - Dev Guide - Project Design Specification.pdf - 18 of 18

